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CALCULATION O F  THE FORCES ACTING ON AN IMPURITY OF A METAL 
SUBJECTED TO A TEMPERATURE GRADIENT 

ABSTRACT-Within the limits of the stated approximations it 
is shown that in the case of self-diffusion the friction of charge 
carr iers  contributes little to the heat transport of the point de- 
fect, at least in normal metals. In transition metals the con- 
tribution of the electrostatic force due to the thermoelectric 
field may be much greater (approximately 0 . 1  eV in Pt) . 
It is shown that in thermal diffusion of impurities the effect of 
carr ier  friction can be substantial for elements whose valences 
differ from that of the matrix. 
The evaluation of the phonon contribution is described as  in- 
conclusive due to the lack of data on phonon scattering by im- 
purities. 

The thermodynamics of irreversible processes permits a formal calcula- 
tion of the flow of the impurities of a metal when the latter is placed in a tem- 
perature gradient. It expresses this flow as  a function of the generalized forces 
of the system by means of phenomenological coefficients which a re  functions of 
the heats of transport of the impurities and of the atoms of the matrix [l]. 

/ 1* 

The microscopic meaning of the heat of transport is a much debated ques- 
tion, particularly when the impurities studied a re  vacancies of the metal (self- 
diffusion). Several authors relate the heat of transport of the vacancies of a 
metal to the characteristic parameters of self-diffusion (energy of formation 
and migration of vacancies) by phenomenological methods. They generally 
assume that the diffusing species receives a certain amount of energy at a given 
temperature from the metal lattice and gives it up to the lattice at a different 
temperature [2, 3, 41. The weakness of these calculations lies in the difficulty 
of assigning a well-defined temperature to localized zones of the lattice during 
the diffusion process. A more elaborate calculation of the Brownian movement 
of the diffusing particle [5] relates the heat of transport to the migration energy 
of the metal atoms. 

In any event, the thermal diffusion of impurities in a metal results from 
forces of two types: 

(a) A force of chemical origin arising from the chemical potential gradient 
of the impurity in the temperature gradient, and 

(b) A force of interaction between the heat-carrying agents (phonons, elec- 
trons of positive holes) and the impurities, This contribution q* to the heat of 
transfer should therefore be expressed as a function of the electrical and thermal 
characteristics of the matrix metal and of the impurity. The calculation given 
here, suggested by a paper given by Professor Huntington at Mtinster (Westphalia, 

* Numbers in the margin indicate pagination in the foreign text. 
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Germany, 1965) constitutes an attempt in this direction. For reasons of con- 
venience, this contribution will be broken down into two terms: 

q* expressing the interactions between an impurity and electrons o r  an impurity 

and positive holes, and 

impurity. 

e 
expressing the interactions between phonons and an 

In Section I, the calculation of q: is carried out by means of two different 

methods, but by using the same type of approximation, The first, similar to the 
semiclassical calculation of interactions between electrons and impurities of a 
metal placed in an electric field [6], enables one to give an order of magnitude 
of q* for the diffusion of interstitials, but it is  difficult to apply to the case of 

substitutionals and self-diffusion. The second method, derived from the calcu- 
lation of Bosviewc and Friedel [7] for the same type of interactions, permits an 
estimation of q* for self-diffusion and the diffusion of substitutionals. 

- /2 e 

e 

Section II concerns the determination of the forces of interaction between 
phonons and impurities. The Debye model, also used by Schottky [18], permits 
an approximate calculation of . The validity of this model is debatable at the 

temperatures customarily used in diffusion experiments. 
9;5 

In Section III, the contribution c$ of electron-impurity interactions to the 
heat of transfer is calculated for several impurities in Cu, Ag and Au. The con- 
tribution $ of the phonon-impurity interactions is given as an example for self- 
diffusion in Cu. 

2 



SECTION I 

CALCULATION OF THE FORCE Fe OF ELECTRIC ORIGIN 
9 

1 - Approximations Used 

Figure 1 gives the notations used in the calculation. 

The impurity placed at 0 diffuses the charge carriers characterized by their 
wave vector k,, their density n (5 in the space of k's and their velocity v (kJ. The 
flow of carr iers  kis therefore: 

N 

d j  (k)  = n (k).  v (k) .  dg k @.I. 1) 
& N  N U &  

The number of carr iers  diffused in the solid angle dQ fixed by angle 8 is, 
per second 

dN = d j  (k) .  u & , e ) .  dn 
N 

(T (k, 6) being the differential effective diffusion cross section. 

(I. I. 2) 

k- k' 
. y N  

k 
.y 

0 

- 
Figure 1. 

The adiabatic approximation, which assumes that the impurity remains - /4 
stationary in the course of the diffusion k - k 's is justified by the fact that the 
vibration frequencies of the atoms of a &eta1 &e of the order of 1012 sec -l, 
whereas the time necessary for carriers of neighboring energy of the Fermi level 
to jump from a lattice site is of the order of 10-16 sec. 

The elastic approximation assumes that in a k_- k, ' transition, the momen- 
tum of the carr ier  remains unchanged, i. e. ,  that the shock absorbs no energy: 

3 
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2 -  

The momentum transferred to the impurity during the shock is therefore*: 

Semiclassical Calculation of E 5  

(I. I. 3) 

The momentum transfer per second from the carr iers  k to the impurity is, 

F (k) = 1% dN = / K .  n (k). v (k). u &,e). dn. d3k 

hl 

in conformity with (I. I. 1, 2 and 3): 

N W  U d ry 

or  

F (k) = k. n (k). v (k). A (k). dgk (I. 11. 1) 
N U  N N e4 

where A (k) is the effective resistivity cross section of electrons k,: 

A (k) = 2a lo u @,e). 

The total force acting on the impurity 

(1 - cos e ) .  sin 8. de (I. 11. 2) 

is therefore 

F = I&. n (5). v (k). A (k). d3k (I. 11. 3) 
c, * 

f (k) where f (kJ is the distribution function of the electrons. 1 

e 4 a  
withn (k) = - 
We then have 

3 '  N 

I I 

(I. II. 4) F ; L /  k. f (k). v (k). A (k). d3k 
CI, 4 a  3 * e u  cc, 

I I 
2 . 1  Determination of the Distribution f (kJ - / 5  

The Boltzmann equation for the transport of carr iers  is written as 

(I. 11. 5) 

The distribution f CX,, r h , t) being little different from the distribution fo 

&, z, t) in the absence of perturbation, equation (I. 11.5) can be linearized in 

E kT - the following manner, knowing that fo (E) = 1 + exp ( c 
* 
The atomic units I el = .h = m = 1 are  subsequently used. 
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where g (kJ is the deviation of the distribution from equilibrium, 
T@ is the relaxation time of electrons k. 

If on the other hand the perturbation of the system is independent of time, 

= o  3f 
3t 

More over, 

where e is the sign of the carr ier  charge and %is the thermoelectric field. 

The linearlized Boltzmann equation is then wirtten as 

From the expression of g Q one can then calculate the force F, the energy 
flux W and the thermoelectricTield E starting from the equation ?= 0: h e  h 

F =---$-I k.  v (k). g (k). ry A (k).  d3  k 
cr 4 n  * e u  

J =  v (k). g (k). a3 k = 0 
3 N N  r3 4 n  N 

(I. 11. 7) 

(I. 11.8) 

2 . 2  Calculation of E h.- and ye - / 6  
2 d By settingu = T . d~ (-T-) component J of J ,  in the direction of the tem- 

perature gradient and of the field E, can be written as 

J = *5/ k .  7 (k) .  k .  - 3fo  . [ - e & + (E + u).  F] cos2 6. dqk 
c3 3 E  

By multiplying and dividing by the number of conduction carr iers  

N = -/f0 1 (k).  dgk 
3 N 41r 

5 



and by defining the mean value of any quantity A (E): 

3fo 2 /2 3 ~ .  En+1. A (E). T (k).  cos 0 .  dgk 
(I. 11. 10) n H c 7 . A  (E). E > = 

fo (E). d 3  k 

we have 

r I - ? = O  

2 
J = N ~  < 7 > . E - ~ e .  < ~ . E > + U < T >  . 

which permits the calculation of E: 

(I. 11. 11) 

The heat flux W is calculated in the same manner: e 

W =%/ (E - EF). k. - fo . k. T (k) .  [ - e & + (E + u). ] . COS 2 0 .  d3 k e 477 a E  u 

i. e.,  with the definition (I.II.10): 

1 We = N e c T (E - EF) > . & -.N. - ~ . [ < T E .  ( E - E ~ ) > + ~ < ~ ( E - E ~ ) >  

Hence, with the value (I.II.11) of e E: 
I 

~~ 

The coefficient of electronic thermal conductivity K can therefore be e written as 

K = % . T . u  e 

whereo = N < 7 > is the electrical conductivity 

2 2 8 = < T E > . < T > - < T E >  - 

T G T >  2 

2 2  is the Lorentz coefficient equal toa 7~ k /3 in the case of free electrons and of 
isotropic relaxation time. 

2. 3 Calculation of the Force F 
N 

In the same manner as  for W and J, we obtain for the projection of F on the 
direction of V,T 

6 
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- e&+ (E + u) VT . cos 2 a. d3 k 1 af0 F = L/ k .  k.  T (k) .  k .  A (k).  
3 n J  4 n  

or ,  with the value of (e€): 

1 I 

I- I 

o r  

in classical units. 

We shall call FZ(o) the force thus calculated, z being equal to the screening 

charge of the impurity whose effective resistivity cross section will be desig- 
nated by AZ(E). To simplify the calculation of the averages contained in the 

expression of F (0) one can make the approximation of the isotropic relaxation 
time: z 

7 ($1 = (E) 

The bracket of equation (I.II.13) is then simply written as  

FM. VN - % . qp 
c =  

SQ) 
with 

and - / 8  

q,, (E)  = E 5 / 2  . A . T 

9, (E) = E .  T 

2 9, (E) = E . T 

qp (E) = E3l2 . A . T 

QQ (E) = E. T 

Neglecting the fourth-order terms in the calculation of C ,  we then simply 
have 



-'I2 . [ 1 + 2 (dA/A, dE/ E C = - IT (kT) . Az ( E F ) .  EF ] (I.II.14) 
1 2  2 
6 

EF 
This enables us  to write the force FZ (0) in the form 

1 - _ - -  
EF 

m" 2 2  F ~ ( o )  - fi K k 
V T  

or  still more simply, since the coefficient of electronic thermal conductivity 
K is related to CT by the relation e 

2 2  r k  . T . 0  K = -  
e 3 

I 

I I 
To obtain this equation, it was not necessary to make explicit use of the 

sign e of the electric charge carriers.  Equation (I. It. 15) is therefore valid 
whether conduction takes place via electrons o r  via positive holes, within the 
limits of the approximations used for obtaining it. 

Actually, this equation is easily interpreted by noting that the total flux J 
of the charge carr iers  is zero, but is in fact the sum of a flux Jc of rrhot'' 

ca r r ie rs  directed toward the cold regions of the system and a flux Jf of "cold" 
carr iers  directed in the direction of V,T: 

Jc + Jf 

If the effective cross section of the impurity were independent of the energy 
of the carriers,  the resultant force to which it would be subjected would be 
directed toward the cold regions, since the momentum brought by the hot carr iers  
would be greater than that brought by cold carriers.  This remark is contained 
in the coefficient 1 of the parenthesis of (I. 11.15). 

The coefficient (&& expresses the fact that the effective cross section 

for the diffusion of the carr iers  by the impurity varies with the energy. If this 
term is sufficiently negative, the effective cross section of the cold carr iers  is 
greater than that of the hot carriers,  which can reverse the direction of the 
force relative to the preceding case. 

d A A  

F 

The sign of the force on the impurity therefore results from the comparison - / 9  
of two processes: 

(a) The momentum brought to the impurity by a hot carr ier  is greater than 
that brought by a cold carrier.  

8 
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(b) The effective cross section of the hot carr iers  may be greater than that 
of the cold carr iers ,  in which case the force F (0) is  obviously directed toward 
the cold regions. z 

If the effective cross section of the hot carr iers  is sufficiently lower than 

It is possible to predict the value of (&E)EGheoretically if  one neglects 

the size effect. It i s  certain, however, that the lattcr must play a major part 
in the process of diffusion of the carr iers  by the impurity. Therefore, in 
estimating ($#$EF it is more correct to use the results of the thermoelectric 

power of impurities, when they exist [26]. 

that of the cold carr iers ,  FZ(o) is directed toward the hot regions. 
CiA A 

On the other hand, the force FZ(o) results from the diffusion of the con- 
duction electrons by the localized potential of the impurity. This force can 
therefore express the thermal diffusion of interstitials, isolated point defects. 
On the other hand, a substitutional impurity diffuses by jumping into a vacancy 
in a nearest neighbor position. The diffusion potential of electrons is therefore 
the potential of two neighboring defects: vacancy and impurity. 

In the case of self-diffusion, the diffusion potential is due to the juxtaposition 
of a vacancy and of a metal ion displaced from its equilibrium position. In the 
course of the jump of the ion into the vacancy, the electron configuration of the 
system varies up to the neck position where the impurity ion is located between 
"two half-vacancies. ' I  In order to have a complete knowledge of the force F in 
the course of the jump, it would thus be necessary to calculate the effective 
cross section A (E ) of the impurity ion a t  any point of its trajectory. F 

To our knowledge, this calculation has never been made. We shall there- 
fore assume that neighboring point defects behave as if they were isolated and 
that their screening charge is independent of the presence of the neighboring 
defect. This approximation is certainly a very rough one, as shown by a recent 
calculation [8] of interactions between impurities in a metal. 

In this approximation, one can calculate the force F resulting from the 
diffusion of electrons by the impurity, and the force F1 due to diffusion by the 
potential of the vacancy. This force F1 is obviously imparted to the ions in the 
vicinity of the vacancy, not to the vacancy itself. The force acting on the ion 
with jumps is therefore F + m F1, where m is a certain coefficient of distribu- 
tion which the force F1 over the neighbors of the vacancy. 

In the semiclassical calculation presented in this section, one cannot calcu- 
late the coefficient m. Below, the force m F1 is identified with the force exerted 
on the impurity by the distortion of the screen of the neighboring vacancy, due 
to the external perturbation (thermoelectric field and temperature gradient). 

3 - Calculation of F in Quantum Mechanics [7] 
N 

In quantum mechanics, the force F acting on the charge z '  located at site b 
relative to the diffusion potential V(rJ Tt the origin is 9 



. 

(I. III. 1) 

where 6 p  (r) is the variation of electron density due to the impurity and to the 

external perturbations. The potential V(r )  is also decomposable in the first 
order in perturbation 

/ 10 N - 
N 

v (1') = vo (2 + V I  (1.) (I. 111.2) 
t e  & 

where V (r) is the perturbing potential in the absence of an eiectric fieid. and 

temperature gradient, and V1(rJ is the potential due to the latter two pertur- 
bations. 

0 -  

V(rJ and 6p(rJ are  related by the Poisson equation: 

A v (r)  = - 4 H. 6 p ( r )  + 4 H z .  6 ( r )  (I. III. 3) 
A, N & 

where z is the screening charge of the impurity. 

3 .1  Determination of 6 p (9 
In the Born approximation, the wave functions diffused by the potential 

V (9 a r e  written as 

(I. III. 4) 

The variation of electron density 6pk (9 is therefore in the first order of 

perturbation 
* - ik . r  

6 pk (r)  = Yk (r)  . \Yk ( r )  - 1 = gk (r). e & N +  C.C. 
d N N N 

The total variation of electron density is therefore 

f (k) . d g  k 
w N w 

. f (k) being the distribution function of electrons . .  
exp ik'. (r-rl) 

.y NCI. . exp ( i k . rl) . V (rl). d 3  k l . d  r1 3 
and.gk ( r )  = - - 

h, - J k t 2 - k  2 - i q  M U  N 

This makes it possible to write 6p (9 in the form 

exp i (2 - k). (r - rl) 
rr* a- . V ( r t )  . f (k) . dgk . d k ' .  d r1 + C.C. 3 3 i3 P = --  

(2 TI6 ./ k'2 - k2 -&i ,., M N 

(I. 111. 5 )  

'I being infinitely small and positive. 

In the approximation where E 

(I, 11,6) makes it possible to write 

is independent of temperature, formula F 

10  



1 2  f (k) = fo (k) + T (k) . k . 3~ - e e  + ?  (k 
M N  3 f o  [ N N r3 

or  by setting 

N C V  (I. 111.6) 

(I. III. 7) 

Setting K = k' - k in the internal, 
N N  N 

K = k - k' in the conjugated complex integral (formula I. III. 5), we have 

(2 H )  N N  ry h) 

N N N  

(3 (5) = - 4 . /ex, (i K . r). v (K) . f (K) . d3  K (I. III. 8) 

where 
1 - i K.  I" e h, d 3  r' is  the Fourier transform of V (9 and 

N 

. d 3 ' k  = f (K) + g (K)  
0 -  cy (Ii) M =/'(;) ' [ K.(K+2k)  N U  - ill N N  K.(K - 2k)  N +.iq 1 1 + -  1 

k=O 

Let us calculate successively fo(KJ and g (9: 

i. e . ,  

In the approximation of an isotropic relaxation time 

11 



K We then have 

g ( K ) = 2 i r  1 r.1 + a 2  ( k 2 - k 2 j 1 .  COS 8 K d k . j l  6 [ K 2 + 2 k K c 0 s  e FJ cv 
0 -*[ K2 - 2 k K c o s  e . cos  8. s i n  e .  d 0 

for by integrating with respect to 8 

1. T (E). d E  
T ,  

g (K) = i r 2 .  cos e 
N 

We then obtain the electron density of the system by replacing f (K) = fo (K) + 
m N 

+ g (5) by its expression in equation (I.III. 8) 

6 P  (r) = / exp (i K. r). v (K). ' f i ,  (K) - i c O s  2 rr e K .  a (K)] .  d g K  (I.III.9) 
rc) N N  H N N 

where it was assumed that /12 
kF I< 21< F + I.; 2 

(I. 111. 10) g (K)  = 1 + -- ( 1  - --- 
0 I( 4 k F 2 I Log 1 2 l q , ~ , . ;  I 

and 
~~ a f  

a (E;) = - -e[ 3 E  - e & +  (E - El,.) . v+ ] . T (E). dE (I. III. 11) 1; I 8  

The result differs from that obtained by Bosvieux and Friedel in the fact 
that a (K) is not simply equal to a = - e€ .  T, but involves the use of averages of 
the relaxation time T(E) on the derived distribution 8 fo/a E. 

Equations (I. 111.9) and (I. III. 3) thus enable one to make a self-consistent 
calculation of 6; (9 and V (9, andhence to calculate the force N F givenby equa- 
tion (I. 111. 1). 

3.2 Determination of the Force Acting on the Impurity Due to the Deformation 
of Its Own Screen 

According to the above authors, the force exerted by the screening charge 
z of the impurity on a charge z '  at site b in the case of a metal subjected to an 
electric field alone is written a s  

1 * a ' ' '  '' .[ Jo (b) - 2 J2 (b) F (b) = - 3 r r  (I. 111.12) 

where we set  

12 



dK 

being the spherical Bessel function of order 2 
j2p P' 

In the case of an impurity of a metal placed in a temperature gradient, a is 
a function of K (eq. I. 111. ll), s o  that the force exerted on the ion by the deforma- 
tion of its own screen is written as 

K 3  2 -  4 2  
3 H  2 -a (K) dK (I. III. 13) FZ (0) = - ___ ' [I K2 + (2kF/T) go (K) ] 

a (K) being given by equation (I.III. 11). 

On the other hand, the effective resistivity cross section of electrons of 
wave vector k calculated in the self-consistent Hartree approximation, is 
written as [.if 

2 (I. 111. 14) k4 ' 1 [ K2 + (2kF/r) go (K) 3 
K 3  dK 2 2k 4 H Z  

AZ (k) = ~ 

Comparison of the last two equations permits the calculation of FZ(o), given 
in Appendix I 

1 FZ (0 )  = - - 4 /p." . A (E) (-a fO .[ - e E +'+ (E-EF) 'c (E). dE 
3 lr2' 0 

On the other hand, using relations (I.II. 10) defining the averages on the - /13 
distribution 6fo/6E: 

312 
. T (E) dE 

< T. A .  E n > = hT. LT-:?). En + 3 ' 2  
3 T h  

and the value (I.II.11) of the thermoelectric field, we have for FZ(o): 

1'2>] T . V T  <TA E3/2> <T> - <TE> <T A E 
T 2 < , > 2  

FZ (0) = - 21/2 N < T > [ (I. 111. 15) 

The force acting on the impurity ion, due to the deformation of its own 
screen, is thus identified with the force due to the diffusion of carr iers  by the 
potential of the impurity. 

3. 3 Determination of the Force Due to the Deformation of the Screen of the 
Vacancy 

What is more interesting to deduce from this calculation is the force F-Z(b) 

exerted by the deformation of the screen of the vacancy on the impurity ion of 
charge Z ' .  When the latter is in a lattice position adjacent to the vacancy, its 
screening charge is 

13 



z = Z ' -  z 

so that the vacancy, of charge -Z, "sees" an impurity of charge c Z .  

According to (I. III. 12), we then have 

(I. 111. 16) 

where we have set  

Q = J (b) - 2 J2 (b) 0 

- a  m =  - 
I Jo (0) 

3.4 Electrostatic Force 

To the forces FZ(o) and F-Z(b) is added the electrostatic force acting on 

the impurity ion. According to Bosvieux and Friedel, this force is, for the 
impurity in substitution: 

1 F S =  Z &  
N N 

(I. III. 17) 

where Z is the valence of 
screens itself until it has 

the matrix containing the impurity (indeed, the latter 
the same valence as the matrix). 

When the impurity is in the neck position i t  is assumed to screen itself /14 - 
completely, like an interstitial, and hence is not subjected to any electrostatic 
force. 

3 . 5  Determination of the effective force F acting on an interstitial or  substitu- 
tional impurity, o r  on an atom of the sol?& near a vacancy. Figure 2 de- 
scribes the situation. 

1 I V I  
3 -  

0 b/2 x * e  b N 

Vacancy 
o r  interstitial site 

Substitutional impurity o r  ion 
of the solvent o r  interstitial 
impurity 

Figure 2. 

Site b is the initial site of the diffusant species and site 0 is the final site; 
b/2 is thgneck position. The following table can then be drawn up for the ex- 
ternal forces acting on the diffusant species in the course of its displacement 
between b and b/2 (Table I). 

14 



The equivalent force for the net diffusion of these forces is obtained by 
joining the value of the force at the neck position to the value at the initial site 
via a sinusoid of period b. 

Effective 
force Fe 

Z' - z b 

Force F is thus calculated in the three cases most common in diffusion. 

Section I11 gives an application of this force to the diffusion of impurities 

e 

in Cu, Ag and Au. 

I 
FZ' (0) I 

i Z&+ F_ (b) + FZl -Z  ( 0 )  -L 

- / 15 Table 1. 

_ - - - - - _ _ _ _  _ - _ _ _ _ _ - _ _  

- 

Species 

! Intersti- 
tial 
impurity 

Atom of 
solvent 
near a 
vacancy 

L 

Force on the ion 0 I 

Z '  

X 

X 
[ Z&+ m FZ(o)]+[FZ(o) - Z &  -mFZ(o) ] . 

2 7Tx . s i n  (T) 

15 



SECTION I1 - / I7  

CALCULATION O F  THE FORCE F DUE TO PHONONS 
^p 

Exactly the same semiclassical calculation can b e  carried cut fer phonons 
as for electrons (paragraph 11, Section I), The adiabatic and elastic approxima- 
tions thus become much more debatable, since the group velocity v of phonons 

"g 
tends to zero in the vicinity of the boundaries of the Brillouin zones. We shall 
use the Debye model, although it does not account for this decrease of v On 

the other hand, the calculation is made in the first  Brillouin zone, i. e . ,  the 
Umklapp processes a re  neglected, This approximation is obviously very rough, 
since these processes a re  indispensable in accounting for the finite values of 
the thermal conductivity by phonons [9, p. 2061. 

%* 

I - Calculation of the Force F and of the Heat Flux W 
-9 ^p 

By analogy with (I. 11.4), the force resulting from the diffusion of the phonons 
fixed by the wave vector a is written as 

(II. I. 1) 

where f (9 = fo (9) + g (4) is the distribution function of the phonons in the tem- 
perature gradient: cy 

A (9) is the effective cross section of thermal resistivity of the impurity: 

A (4) = 2 7rL' o ( q , g ) . ( l  - cos a) .  s in  a . d g  (II. I. 2) 

We assume that only the longitudinal waves contribute to F The linearized 
Boltzmann equation is then written a s  "P' 

with 

and 

(11. I. 3) 

We then obtain for the deviation of the distribution function 

In the approximation of isotropic relaxatiom time ~ ( q ) ,  the component F /l8 "P - 
along VT is written as 

N 
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. 

Similarly, assuming that the spectrum of phonons of the three different 
polarizations is the same, the heat flux W can be written as 

P 

A s  can be readily verified, (II. I. 6) is identical to the classical equation 

cv (9). v (q).  A (q). dg q +jdqM U @I. I. 7) 
W = - V T .  

P 
pOlarizationS 

where we set A (4) = v (4). 7 (4, A (4) being the mean free path of phonons q, 
N (Y N N & 

C (9) is the specific heat of phonons q at constant volume. 

Comparison of formulas (II. I. 4) and (II. I. 6) makes it possible to write 

N V 

A(q), the effective cross section of the defect whose diffusion is being 
studied, is difficult to calculate. Indeed, as in the case of electrons, a substi- 
tutional impurity must jump into a neighboring vacancy in order to diffuse. The 
defect which diffuses phonons is therefore a vacancy-impurity pair associated 
with the field of displacement of the atoms located in the vicinity of the pair. 
A s  a result, we can estimate the value of A (q) only very roughly. For the 
diffusion of phonons by point defects, A (q) is written as 

(II. I. 9) 

where p is a coefficient taking into account the mass difference 6M/M of the 
impurity, the variation of the force constant 6f/f and the field of displacement 
6R/R in the vicinityof the impurity [lo]: 

6 
. A2 3 a  

B r 4 7  

where 

I1 - The Debve Model 

(II. I. 10) 

In order to simplify equation (II. I. 8 ) ,  one can, for example, use the Deybe model: 

1 7  



w = s . q  

where S is the velocity of sound in the solid, assumed isotropic and independent - /l9 
of g. 

If in addition we set 

A being the mean free path of phonons, assumed independent of q, we have 

(II. 11. 1) ’ . K  . V T . I  
1 k T  F = - - -  

P 
(33 . - -  

P s5 

where 

(IL 11.2) 

0 being the Debye temperature. D 
I11 - Determination of the Effective Force F acting on an interstitial impurity, 

substitutional impurity, o r  on an atom of solvent near a vacancy. 
-P 

The situation is the same as that described in Figure 2. Unfortunately, for 
phonons the variation of the effective cross section A (4) with the position of the 
diffusant speicies is known even less than for electrons. 

We shall therefore assume for diffusion by interstitials that the force is 
independent of the position of the diffusing atom. In the case of diffusion of an 
atom in substitution, coefficient /3 can be estimated when it is in an equilibrium 
position in the vicinity of a vacancy. 
position, there is no information on A (4). We shall therefore assume, to have 
an order of magnitude for F that the force of the phonon-impurity interaction 

remains constant along the path of the impurity. 

On the other hand, when it is in a neck 

P’ 

This is  obviously a very rough approximation. 
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SECTION I11 - /21 
FORCE ACTING ON A NOBLE METAL IMPURITY (Au, Ag, Cu) 

Phenomenological equations show that in a temperature gradient, the 
entrainment velocity of a substitutional solute relative to the lattice is written in 
the form 

(111.0. 1) 

kT 

tration C on the solute. 

represents the force of chemical origin due to the gradient of concen- 3 x  

. V T  is the force due to the fact V T  Q* -*HL - 
T It can be shown that b E . 7  = 

that the system is subjected to a temperature gradient: AHL is the enthalpy of for- 

mation of a vacancy in the vicinity of an atom of solute and &* is the heat of 
transport of the solute. 

The force of interaction between the heat-carrying agents and the metal 
solute should therefore be contained in the term AE. Whether this force parti- 
cipates in what is called Q* o r  whether it is added to Q* depends on the manner 
in which the phenomenological equations a re  written. Without trying to delve 
into this question any deeper, we shall write 

(111. 0. 2) AE = AE + q *  1 

q* being simply the contribution of the force due to electrons and phonons to the 
energy AE. Neglecting the electron-phonon interactions, one can then obviously 
separate the contribution of these two types of heat carr iers .  

T 
qf = - (Fe + Fp). E = 4," + q; 

I - Determination of q*e for Different Solutes in Cu, Ag, Au 

According to Table I, force F due to electrons is of the form e 

(III. 0.  3) 

(III. 1.1) 

Z is the valence of the matrix, Z '  that of the solute, m is the coefficient of dis- 
tribution on ions near a vacancy of the force due to the diffusion of electrons by 
the vacancy. 

E is the thermoelectric field in the system. 
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On the other hand, the forces FZ(o) a re  given by equation (I. 11.15): 

(III. I. 2) 

1 / 2  
(a) M = (=) . Keis a characteristic of the matrix. 

For Cu,  the thermal conductivity by phonons is sufficiently low so that Ke can 

be identified with the total thermal conductivity coefficient. 

EF 

For Ag and Au, no experimental value of Ke exists at  high temperature; 

in these metals, Ke was determined by the Wiedemann-Frau Law. 

(b) AZ(E F) can be obtained experimentally by the resistivity measurements - /22 

on alloys of increasing concentration. Indeed, the impurity resistivity pi of 

electrons of energy E is written as 

m *  x Pi  (E) = (III. I. 3) 

with 

1 
n. T . AZ (E). v = - 
1 

where v is the velocity of electrons of energy E.  

At a low concentration ni of impurities, the concentration of conduction 
the concentration in the pure metal, which electrons n remains equal to n 

makes it possible to write the total resistivity pi in the form 
0’ 

(III. I. 4) 

In the univalent Cu, Ag, Au, n./n is  equal to c the atomic concentration 
1 0  i’ 

of impurities, and the derivative of p i (EF) at c.  = o is written as [25] 
1 

Or, i f  E is expressed in eV and AZ(EF) inA2: F 

6 .  1 = 0 ,211  . E ~ ~ / ~  . A= ( E ~ )  pn.cm/per cent (III. I. 5) 
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AZ(EF) can thus be deduced from values of ci published by Landolt and Bornstein 
and due to Linclc [2?]. 

- d A  
(c) Q I  - the derivative at the Fermi level of the effective resis- 

EF 
tivity cross section of the impurity, can be deduced from the variation at  c.  = o 

of the thermoelectric power S of alloys a s  a function of c. .  According to 
F. A.  Otter [26], the derivative of S a t  the origin is given by the equation 

1 

1 

0,0243 5, T 
(ID. I. 6) dS 

( 100 dci '0 ( al - Q~)' PT 

is the critical parametera! characteristic of the - - - ST 1 where ac = - T ' 0 , 0 2 4 3  2 EF 

p metallic matrix. ST, a re  the thermoelectric power and resistivity of the 
T 

pure metal at  the temperature of the measurement of S. - /23 

Let us  note that this analysis is acceptable if the effective cross section A 
does not vary too rapidly in the vicinity of El<. ( I a l  1 5 0,2) .  

1 thus permits the determination of al .  For alloys The value of (q 
c.  = o  

dS 

1 
of Cu, Ag and Au studied experimentally by Domenicali and Otter [25] and Otter 
[26], we used their values of a . For the other alloys, we resumed their analysis 
starting from measurements ol the thermoelectric power given in the literature 
[28], [27]. The values of a thus obtained are  not always very reliable, since 
not many measurements of S on low concentration alloys have been made. 

1. 1 Impurities in C u  at 1000°C 

7 E = 7 e V ,  m* = meKe = 3.15 x 10 erg/cm sec deg, so that the coefficient M F 
is 

2 
M = 0.20  erg/cnl deg 

Between 0 and 200°C, pT is adequately represented by the equation 

pT = 6 .  10-3T (pn.cm) 

so that equation (111. I. 6) can be written in the form 

(a) Determination of the Forces FZ(o) 

Table I1 summarizes the calculations made in order to obtain the force 
Fz(o) acting on different impurities of screening charge z = Z '  - Z in copper. 
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The values o! marked with an asterisk a re  those obtained by Domenicali 
and Otter [25] and Otter [26]. In the case where no experimental value of the 
thermoelectric power exists, the same value of a 1 was taken within a given 
group of elements of 2, This is roughly justified by the fact that according to 
the theoretical value of A,(EF) (equation I. III. 14), a 1 is dependent on z alone. 
This identification obviously neglects the size effect. 

(b) Calculation of the effective force Fe 

Solute Z' 

AE: 1 Au 

Zn 
Cd 2 
HE: 

A1 
Ga 3 
In 

Si 
G e  4 
Sn 

P 
A s  5 
Sb 

P d  
Pt 
M n  
Ni 

According to Table I, the effective force Fe  actingon an ion of solute is written as 

-- 
p Q. cm/at.o/, 6i  101$Az (EF) i o ?  F, ( o ) /  vrr 

(cV/ t leg)  p V /  "C . a t  "1. 

0 , 5 5  0 1 0 8  - 0 , 1 2  + 0 , 1 3  - 0 ] 3 5  

0 , 3 2  0 1 5 7  - 0 , 4 7  - O118  + o l l l  
0 1 3 0  0 1 5 4  ( -  o l l l q  + 0 , l O  
1 1 , 7 9  ( -  O 1 l 8 )  + 0,24 

1 1 4 2  2 , 5 4  - 1 , 4 1  - O 1 O 6  13 - O l O 5  

c rn2 

0 , 1 4  0 1 2 5  - 0 , 0 9 4  + 0 , 0 2  - 0 1 0 4  

-- 

- -- 
1 , 2 5  2 , 2 4  ' ( -  0 , 0 6 )  ' - 0 , 0 4  

1,06 1,9 ( -  0 1 0 6 )  - 0,04 

3 , 9 5  7 , 0 7  - 0 1 2 2 +  + 1 , 8 4  
- 3 , 7 9  61  8 - 5 , 5  - 0 1 1 8  U + 1,3 

2 , 8 8  5 , 1 5  - 0 , 2 2 +  + 1 , 3 4  

6 , 7  12 ( -  0 1 4 )  + 1 , 4 4  
- 0 1 1 4  0 + 1 , 4 7  6 18 

(- 0 1 1 4 )  + 1,16 

- 0 , 4 8 *  + 1,14 

5 1 4  

0 1 8 9  1 , 5 9  
2 1 1  3 , 8  - 0 , 8 8 *  + 5 , 4  
2 , 9  5 , 2  + 0 , 2 0 +  - 2 , 4 7  

+ 6  ik 1125 2 , 2 4  - 1,6 

For copper at 1000°C, e€/VT= 0.07 x eV/deg according to Landolt and 
Bornstein [27]. On the other hand, the calculation shows that m = 0.187. 

The force Fz(o) exerted on a vacancy in copper has been identified with the 
force acting on an ion of Zn in the same matrix. 

Table 2. FORCE F,(o) ACTING ON AN IMPURITY O F  SCREENING - b 4  
CHARGE z IN A Cu MATRIX 
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The force FZ,(o) exerted on the solute in the neck position is identified 

with the force on an impurity in substitution of screening charge Z ' ,  and Iieiice 
of valence Z '  + Z = Z '  + 1. In order to take the best possible account of the 
size effect, the impurities in substitution and in equivalent neck positions 
should follow each other in the periodic classification of the elements. For 
example, Cd in a neck position is assumed to be analogous to an In ion in 
substitution, whereas a Zn ion in a neck position behaves as Ga. This is 
certainly a very rough approximation, but i t  is unfortunately impossible to 
really know experimentally the effective resistivity cross section of a solute 
in the neck position. 

In tge case of the transition metals Pd, Pt, Mn and Ni ,  the force F acting 
on the ion was assumed to remain constant during the entire course of the 
jump, since the electronic structure of the impurity in the neck position is 
unknown. 

Table I11 gives the result of calculations thus obtained (T = 1273°K). 

From this table, the following considerations can be deduced 

The effective force acting on an ion of the matrix metal in the course of 
the jump is very weak, as well as  for the ions of valence close to that of copper. 

The force acting on an ion of solute can change sign during a jump, and /26 
this leads in particular to the low values obtained for Au, Zn, Cd and Hg. This- 
shows that the value of the results given in Table I11 depends closely on the 
validity of the model which we employed to calculate the effective force. 
lack of experimental results pertaining to the diffusion of impurities under a 
temperature gradient unfortunately does not permit us to verify the theory. 

The 

1. 2 - Impurities in Ag at  900°C 

= 5 .5  eV; Ke = 3.6 x 10 erg/cm sec deg, which makes it possible to 7 E F 
calculate the coefficient M 

M = 0,26 erg/crn2.deg 

and 

On the other hand, (e€/VT) = 9. (eV/deg) at 900°C, and m = 0.171 

Table IV summarizes the calculations made. 

1. 3 - Impurities in Au at 1000°C 
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7 EF = 5,5 eV ; Ke = 2 , 4 . 1 0  erg/cm sec deg, whence 

M = 0 , 1 7  e r g l c m  2 . d e g .  

-3  Between 0 and 200°C,  PT 8 , 2 . 1 0  T ( p k c m )  

and 

e €  Ontheotherhand, (-+I = 3,7. lOe6 (eV/deg)  andm=O. 171. Hence, Table V.  

Few measurements of the thermoelectric power have been made in Au, so  
that the theory cannot be applied satisfactorily. 

1 . 4  - Discussion 

Al l  the above numerical calculations utilize the experimental values of 
AZ(EF) and cy1. These two quantities could of course be deduced from the 

formula (I. 111.14). Although the agreement with the experimental values is 
adequate for impurities close to Cu, Ag o r  Au in the classification, it becomes 
poor a s  soon as z = Z '  - Z exceeds 2 or 3. Indeed, the self-consistent Hartree 
method predicts a variation of AZ(E ) in 22, correct with z is low, but which 

becomes poor as soon as z becomes large. The correct variation of AZ(E ) F 
is found theoretically by using the concept of the virtual bound level, and in 
this case the value of AZ(EF) given by (I. III. 14) is obviously incorrect. 

deformation of the screen of the vacancy to the effective force is relatively 
slight. This is probably due to the fact that we used the approximation of in- 
dependent screens. This is undoubtably a fairly rough approximation, since 
the screen radii are  of the order of interatomic distances. 

F 

On the other hand, the above calculations show that the contribution of the 

The correct manner of solving the problem would be to determine theo- - / 29 
retically the deformation of the following screen of the system with three point 
defects (see Figure 2): 

the impurity ion in position x, 

absence of the metal ion in positions 0 and b. 

This calculation would permit the determination of the force F acting on the 
impurity ion at  any point of its trajectory. 

I1 - Determination of * for a Metal Ion of the Matrix QP 
According to formula (II. II. l), the force F is written as 

P 
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F = - 2 ( - r )  kT . - -  ' . K . V T . I  
P s j  P 

or  

The variation of the elastic constant 6f/f and the displacement 6R/R of 
nearby ions close to the impurity a r e  known only when the impurity is a vacancy 
of the metal. In this case, for an ion of the metal close to a vacancy, the co- 
efficient p is written as 

In order to calculate 6f/f, let us note that when an ion is close to a vacancy, 
it is displaced by the presence of the latter by an amount 6R such that the force 
exerted by the vacancy is equal and opposite to the force exerted on the ion by 
the entire lattice. 

According to Huntington [15], the interaction potential between two ions in 
copper can be written as 

whence the variation of the elastic constant in the vicinity of the vacancy is 

The knowledge of 6R/R thus gives the knowledge of 5f/f. 

A s  far as the coefficient of thermal conductivity Kp by phonons is concerned, 
it is difficult to know it accurately in metals, since the electronic conductivity 
is much greater than the lattice conductivity. We shall use the experimental 
results obtained by doping the metals studied so a s  to eliminate the electronic 
conductivity [16]. 

The calculation of * for a copper ion in the vicinity of a vacancy is sum- % 
marized in the following table: 

The result which we have obtained for  q$ is therefore much smaller than - /30 
those obtained by Schottky [18], deduced from a calculation based on the Rice 
dynamic theory. On the other hand, the approximation which we made (elastic 
scattering of phonons by the defects, isotropy of the relaxation time, Debye 
model) do not permit a great deal of confidence in the numerical value of the 
results obtained. 
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Table 6. EFFECTIVE FORCE ON A Cu ION 

T 
(X) 

1273 

! 
6 R I R  6 flf  B I I ~ c i+  1 K s P O D  

P 
(OK) erg/cm. cm/sec 

I eV sec deg 

339 2,4.10 2,5.10 - 0,02 + 0,3 3,1.10-48 
(toward 

I: 141 [ 161 [l2] [17] cold 
side) 

CONCLUSION 

The above results show within the limits of the approximations made that in 
the case of self-diffusion, the friction force of the charge carr iers  on the point 
defect contributes little to the heat of transport of the latter, at least in normal 
metlas. In transition metals the contribution of the electrostatic force due to 
the thermoelectric field could be much greater (of the order of 0 . 1  eV in Pt). 

In the case of the thermal diffusion of impurities, the friction force of the 
carr iers  can be fairly high for elements of valence differnt from the matrix. 

The contribution of phonons is difficult to calculate because information on 
the processes of scattering of phonons by an impurity is  lacking. 

On the other hand, it is a bit uncertain to try to decide the validity of the 
theory, since few experimental results are available. For example, for self- 
diffusion, the numberical values a re  fairly rare ,  in view of the difficulty of 
detecting very weak flows of vacancies. In the case where flows have been 
observed [ll, 19, 20, 21, 221, the order of magnitude of the heats of transport of 
the vacancies could be explained by our calculation. However, it should be noted 
that in several experimental studies, no thermal diffusion of vacancies could be 
demonstrated [23, 24, 111. 
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APPENDIX I 

Calculation of the Force F (0) 
Z 

Using equations (I. III. 11) and (I. III. 13), we have for FZ(o): 

ax . f ( x ) . ~  ( x ) .  dx dK (A. 1) 1 4 2  2 0 0  K 3  F (0) = - - 
- 
2 

' 
[K2 + (2kF/a) 1 'I 

1 

f (x) being defined by the equation 

2 f ( x ) = * e € + T ( T  V T  x - E F )  

The effective resistivity cross section of electrons of wave vector k/2 
scattered by the impurity is written [VI as: 

This makes it possible to express FZ(o) in the form 

where y = K/2. 

Integrating equation (A. 4), by parts, we simply have 

1 afo c F 
VT - e 6 + T (E-E ) A (E). E2 . T (E) .  (x) . 00 . dE (A. 5) 4 

In order to compare the result this obtained with the semiclassical result 
(I. 11. 15), let us  note that 

On the other hand, according to equation (I. 11. ll), the thermoelectric field 
E verifies the relation 
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Taking these two equations into account, we now have for the force FZ(o) - / 32 

This is exactly the same as  equation (1.11.15) in the case where the effective 
mass of the carriers is equal to that of the electron. 
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